ZnO thin films implanted with Al, Sb and P: optical, structural and electrical characterization.

نویسندگان

  • T Viseu
  • J Ayres de Campos
  • A G Rolo
  • T de Lacerda-Arôso
  • M F Cerqueira
  • E Alves
چکیده

In this work we report a study on the structure, optical and electrical properties of P, Sb and Al implanted ZnO thin films that had been produced by r.f. magnetron sputtering. The influence of the different replacing atoms on the structure and properties of the films has been explored. Looking for the best annealing conditions, two different annealing temperatures (300 degrees C and 500 degrees C) have been employed. Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction, transmittance and d.c conductivity measurements have been used to characterize the samples. X-ray diffraction and Raman scattering patterns confirm that after annealing, doped films keep a polycrystalline nature with (002) preferred orientation. These films remain very transparent and the electrical conductivity increases significantly after the 500 degrees C annealing, reaching 10.90 (Omegacm)(-1) in the P-doped, 10.33 (Omegacm)(-1) in the Al-doped and 0.56 (Omegacm)(-1) in the Sb-doped samples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Al Doped ZnO Thin Films; Preparation and Characterization

ZnO is a promising material suitable for variety of novel electronic applications including sensors, transistors, and solar cells. Intrinsic ZnO film has inferiority in terms of electronic properties, which has prompted researches and investigations on doped ZnO films in order to improve its electronic properties. In this work, aluminum (Al) doped ZnO (AZO) with various concentrations and undop...

متن کامل

A Study of ZnO Buffer Layer Effect on Physical Properties of ITO Thin Films Deposited on Different Substrates

The improvement of the physical properties of Indium Tin Oxide (ITO) layers is quite advantageous in photovoltaic applications. In this study the ITO film is deposited by RF sputtering onto p-type crystalline silicon (c-Si) with (100) orientation, multicrystalline silicon (mc-Si), and glass substrates coated with ZnO and annealed in vacuum furnace at 400°C. Electrical, optical, structural a...

متن کامل

Deposition and characterization of SnO2:Sb thin films fabricated by the spray pyrolysis method

In this study, thin films of transparent semiconductor tin oxide doped with antimony impurities on the glass substrates with different concentrations of antimony that have been prepared using spray pyrolysis method. The effects of different concentration of antimony on the structural, optical, and electrical properties of the thin films were investigated. Prepared layers were characterized by X...

متن کامل

An experimental and theoretical study on the physical properties of Al doped ZnO thin films

In this research, ZnO thin films with Al impurity as dopant were coated onto cleaned glass substrates by the spray pyrolysis technique. Crystal structure of the thin films was studied via XRD, and UV-vis spectroscopy was carried out to investigate their optical properties. Finally, in order to study the effect of Al impurity in ZnO thin films, the band structures of both pure and doped systems ...

متن کامل

Enhanced Physical Properties Of Indium Tin Oxide Films Grown on Zinc Oxide-Coated Substrates

Structural, electrical and optical properties of indium tin oxide or ITO (In2O3:SnO2) thin films on different substrates are investigated. A 100-nm-thick pre-deposited zinc oxide (ZnO) buffer layer is utilized to simultaneously improve the electrical and optical properties of ITO films. High purity ZnO and ITO layers are deposited with a radio frequency sputtering in argon ambient with plasma p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of nanoscience and nanotechnology

دوره 9 6  شماره 

صفحات  -

تاریخ انتشار 2009